3 research outputs found

    Topology based packet marking for IP traceback

    Full text link
    IP source address spoofing exploits a fundamental weakness in the Internet Protocol. It is exploited in many types of network-based attacks such as session hijacking and Denial of Service (DoS). Ingress and egress filtering is aimed at preventing IP spoofing. Techniques such as History based filtering are being used during DoS attacks to filter out attack packets. Packet marking techniques are being used to trace IP packets to a point that is close as possible to their actual source. Present IP spoofing&nbsp; countermeasures are hindered by compatibility issues between IPv4 and IPv6, implementation issues and their effectiveness under different types of attacks. We propose a topology based packet marking method that builds on the flexibility of packet marking as an IP trace back method while overcoming most of the shortcomings of present packet marking techniques.<br /

    Energy efficient on-demand addressing for wireless sensor networks

    Full text link
    Conserving of battery power is a critical requirement in WSNs. Past studies have shown that the transceiving process consumes more energy than the internal processing. This work focuses on eliminating overhead messages used for address allocation by employing multiple base-stations. In this context we explore address allocation without Duplicate Address Detection (DAD). We present an alternative approach to Duplicate address detection using the sink as an address pool to maintain and systematize available addresses. Experimental results show that this approach eliminates overhead messages generated by DAD; resulting in energy savings when used in conjunction with an on-demand address allocation mechanism.<br /

    Topology Based Packet Marking for IP Traceback

    No full text
    Abstract β€” IP source address spoofing exploits a fundamental weakness in the Internet Protocol. It is exploited in many types of network-based attacks such as session hijacking and Denial of Service (DoS). Ingress and egress filtering is aimed at preventing IP spoofing. Techniques such as History based filtering are being used during DoS attacks to filter out attack packets. Packet marking techniques are being used to trace IP packets to a point that is close as possible to their actual source. Present IP spoofing countermeasures are hindered by compatibility issues between IPv4 and IPv6, implementation issues and their effectiveness under different types of attacks. We propose a topology based packet marking method that builds on the flexibility of packet marking as an IP trace back method while overcoming most of the shortcomings of present packet marking techniques
    corecore